首页> 外文OA文献 >Bayesian foreground segmentation and tracking using pixel-wise background model and region-based foreground model
【2h】

Bayesian foreground segmentation and tracking using pixel-wise background model and region-based foreground model

机译:使用逐像素背景模型和基于区域的前景模型进行贝叶斯前景分割和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a segmentation system for monocular video sequences with static camera that aims at foreground/\udbackground separation and tracking. We propose to combine a simple pixel-wise model for the background with a general purpose region based model for the foreground. The\udbackground is modeled using one Gaussian per pixel, thus achieving a precise and easy to update model. The foreground is modeled using a Gaussian Mixture Model with feature vectors consisting of the spatial (x, y) and colour (r, g, b) components.\udThe spatial components of this model are updated using the Expectation Maximization algorithm after the classification of each frame. The background model is formulated in\udthe 5 dimensional feature space in order to be able to apply a Maximum A Posteriori framework for the classification. The\udclassification is done using a graph cut algorithm that allows taking into account neighborhood information. The results\udpresented in the paper show the improvement of the system in situations where the foreground objects have similar colors\udto those of the background.
机译:在本文中,我们提出了一种具有静态相机的单眼视频序列分割系统,其目标是前景/背景分离和跟踪。我们建议将背景的简单像素模型与前景的基于通用区域的模型相结合。 \ udbackground每个像素使用一个高斯建模,从而实现精确且易于更新的模型。使用高斯混合模型对前景进行建模,其特征向量由空间(x,y)和颜色(r,g,b)组成。\ ud对模型的空间成分进行分类后,使用Expectation Maximization算法进行更新。每个帧。在5维特征空间中制定背景模型,以便能够将最大后验框架应用于分类。 \ udclass分类是使用允许将邻域信息考虑在内的图割算法完成的。本文中给出的结果表明,在前景对象的颜色与背景颜色相似的情况下,该系统得到了改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号